Graph Traversal Algorithms for Transit Optimization

Ben Kronberger

Urbanization is a growing trend in modern society, and in order to accommodate this
increasing population cities invest large amounts of time, energy, and effort into bolstering
their public services. One of the most relevant and useful services for the urban population is
public transit. Planning of public transit is key in making sure it is effective and useful. This
planning takes into account relevant locations for stations on routes, the distances between
these stations, and how their locations can positively impact the surrounding neighborhoods
and general populace. A relevant problem arises from this, that being planning routes
between points using as much existing infrastructure as possible. This problem can be
abstracted to one of search algorithm utilization, as an effective method of determining
paths between points becomes a problem of graph searching using weighted edges. In this
investigation, different methods will be used to find routes in a node graph. These methods
include Dijkstra’s algorithm for shortest paths, a bidirectional implementation of Dijkstra’s
algorithm, A* search, and the Bellman-Ford algorithm.

1 Problem Background and Literature Review

In their paper Genetic Algorithm for Scheduling Routes in Public Transport de los Angeles
Saez Blasquez et al discuss a genetic algorithm for optimizing distance and carbon emissions
in a simulated metro environment [BGGMEP14]. They then compare this algorithm with
Dijkstra’s shortest paths algorithm in order to establish whether the proposed genetic algo-
rithm is more efficient. The paper first covers the definition of the graph representation that
is used for the algorithms, denoting edges and vertices as paths and stops. Next it defines
both Dijkstra’s algorithm and genetic algorithms in order to later discuss their pertinence of
these concepts to their application. Finally the genetic algorithm is proposed and defined by
selection, crossover, and mutation stages. In their proposition, a main facet is the reduction
of graph size in each search by concatenating non-junction nodes between the origin and
destination. The summary of their findings shows that their genetic algorithm requires less
computational effort and outperforms the two classical methods (Dijkstra’s and standard
genetic algorithm).

A Benders Decomposition Algorithm for Demand-Driven Metro Scheduling by Schettini
et al proposes a new approach to metro scheduling [SJTM22]. They discuss scheduling trains

individually instead of between terminals in fixed timetables. This is accomplished by using a
Benders-based branch-and-cut algorithm on a path-based formulation of the problem. This
approach simplifies complicating variables in a complex problem, making the subproblem
significantly easier to solve. Once this subproblem is determined, the decomposition iterates
by projecting this relaxed ”sub-solution” onto the space of the remaining variables, converg-
ing to optimality. The paper then goes on to discuss the problem space and representation of
their variables, and defines lemmas upon which they construct the guiding equations for their
algorithm. In their conclusion, they observe that their algorithm decreased the maximum
number of boarded passengers, the variance of the occupancy of trains, and the distance
traveled by the trains.

Hasan et al in A Genetic Algorithm-Based Optimal Train Schedule and Route Selection
Model evaluate several strategies for solving schedule and route optimization and eventually
select a genetic approach [MSM™21]. In their evaluation they investigate Tabu search, Shift-
ing Bottleneck algorithms, and their proposed genetic algorithm. After being tested with
different historical data sets, they conclude that their genetic approach measures with far
higher accuracy than the other approaches considered.

In their conference paper An integrated and optimal scheduling of a public transport sys-
tem in metro Manila using genetic algorithm Escolano et al focus their efforts to develop
a genetic algorithm that concerns itself with dispatching and scheduling of vehicles in their
model in order to quell passenger demand and congestion [EDF14]. The optimization shown
lies in decreasing the transfer time of passengers at transfer nodes while satisfying the con-
straints of traffic demand, departure time, and headway. They then discuss the mathematics
being used to model the system and how they operate under different constraints, and then
their implementation in C++. They observe their method to be quite efficient, and cite
numbers of boarding/departing passengers and vehicle headway as major factors in getting
these results.

In their paper Train re-scheduling with genetic algorithms and artificial neural networks
for single-track railways Dundar and Sahin investigate methods of rescheduling timetables
for trains in response to various issues and confounding variables [D13]. In doing so, they
also discuss the building of a genetic algorithm for the purpose of short-track route optimiza-
tion. They compare their genetic algorithm against a neural network trained with actual
conflict resolution data from Turkish State Railways, and found that the genetic algorithm
outperformed the neural network for small sized problems.

Modeling and Solving the Train Timetabling Problem from Caprara et al proposes a graph
theoretic formulation for the problem of timetable scheduling using a directed multigraph
[CFT02]. This allows them to derive a linear programming model that utilizes Lagrangian
relaxation in its method of solving. They then go on to discuss more aspects of their modeling
of the situation, including definitions for nodes and arcs to aid solving. This is all applied
to a heuristic algorithm for solving of the overall problem.

Public transport route planning: Modified Digkstra’s algorithm by Bozyigit et al discusses
the application of Dijkstra’s algorithm for shortest paths to the problem of metro route
scheduling, noting that it does not consider factors such as number of transfers and walking

distances [BAN17]. They then impose a penalty system in order to account for these, and
apply the modified algorithm to a real-world public transport network and compare the
results to that of the standard Dijkstra approach.

Lewis discusses modified versions of Dijkstra’s algorithm in Algorithms for Finding Short-
est Paths in Networks with Vertex Transfer Penalties [Lew20]. These algorithms are dis-
cussed in relation to graphs of different sizes, outline procedures for imposing penalties upon
vertices. These penalties can be used to simulate things like transfer time at a station in a
public transport problem. These algorithms are then tested on various graphs and evaluated
against the standard Dijkstra algorithm with positive results in specific cases, highlighting
constraints and considerations of the larger problem.

Mitra et al investigates several algorithms for graph search and routing in A Survey
on Routing Algorithms for Efficient and Optimised Railway Scheduling [MMP14]. Among
discussing and comparing algorithms, the setup of the experiment and comparison thereof
is particularly helpful for the purposes of this project.

In summary of the referenced materials, there exists a complicated problem of graph
searching and optimization for public transport networks. The formulation of the graph
model and subsequent factors to consider are outlined well as it relates to this study by de los
Angeles Saez Blasquez et al, Caprara et al, and Lewis [BGGMEP14] [CFT02] [Lew20]. Vari-
ations on Dijkstra’s algorithm are proposed by de los Angeles Saez Blasquez et al, Bozyigit
et al, and Lewis [BGGMEP14] [BAN17] [Lew20]. Genetic algorithms are proposed by Hasan
et al, Escolano et al, and Dundar and Sahin [MSM*21] [EDF14] [D13]. Other propositions
for solving this problem are Benders Decompositon from Schettini, Tabu search and Shifting
Bottleneck algorithms from Hasan et al, and a linear programming based heurisitc algorithm
from Caprara et al [STM22] [MSM*21] [CFT02].

2 Problem Approach

2.1 Representation

The foundation of this problem is a node graph. A node graph is a collection of nodes, with
edges assigned that connect them. In this problem, a node is defined as a transit stop location
with a name, latitude, and longitude. The data provided by MetroTransit includes other
characteristics of each transit stop, but for the purposes and scope of this investigation only
name and location are considered. In addition, edges are defined in the graph by distances
between each stop. Given the data, each edge is one that connects two stops on a line, and
in this representation each line is aggregated into the larger node graph so that every stop is
connected to every other stop by way of intermediate stops between them. This is to allow
for any possible route between any two stops to be searched for and to eliminate orphaned
stops due to characteristics of real-world lines and metro routes. The node graph used also
makes no consideration for stops that are solely intended for the light rail trains (LRT),
busses, or bus rapid transit (BRT) modes of transportation. This combination of routes and
stops creates a generally connected graph with no barriers between stops other than physical

distance and predetermined bidirectional connections. These constraints allow the problem
to more accurately align with the goals of investigating optimal routes, rather than being
limited by the necessity for new infrastructure to be built in the real world. Edge weights
are then applied so that the algorithms may more accurately evaluate optimal routes, and
these weights are calculated from the real-world distance between routes.

2.2 Graph Data

The data used to construct this graph is open source and provided directly by MetroTransit,
offering a dataset that models the actual 8679 transit stops across every line and route in
Minneapolis. This data was selected in order to model a real world problem in a real world
location. This data is provided in the General Transit Feed Specification (GTFS) format,
which is an open source project that transit authorities are able to participate in to allow for
independent development using real world datasets. in this specification are many aspects
that go far beyond the scope of this examination, and the data subsets used are those that
name the stops and their locations. This data is then compiled into a Networkx graph using
Peartree and Pandas. Peartree was used to convert the GTFS feed into Pandas data frames
which were passed to Networkx. Using these tools the feed data was translated into a list
of stops and a list of edges, and these were combined into a graph representing accurately
every transit stop in Minneapolis and their edges.

2.3 Solving the Problem

For the purposes of this project, the problem is formulated to investigate graph search
algorithms as they relate to a node graph. The solution to this problem will be the algorithm
that performs best across a series of experiments, with the results of these experiments viewed
in aggregate. Considerations will be made for performance on paths of varying lengths, so
as to investigate applications to paths in a short space of investigation as well as those in a
larger space.

3 Experimentation and Results

3.1 Experiment Design

The code for this investigation is written in a fashion that allows each algorithm to be run on
a series on inputs, being evaluated each time on the same inputs. The code constructs a node
graph using Networkx and selects two random points. These random points are then passed
to each algorithm in order, and their performance is evaluated. This process is embedded in a
loop to determine performance across a varied set of inputs, so that particular characteristics
of the graph are not deterrent to the performance of each algorithm. In each iteration of the
loop, the input stops are chosen at random from the stop list. The performance and path
length are recorded in a list at the end of each loop. This list is then averaged at the end
of execution, so that performances over the full body of evaluations may be compared with
one another. The path lengths are recorded so that optimality may be investigated, as if
every algorithm truly finds the optimal paths then they will all agree on the length of said
optimal path. These metrics are then recorded in a results table so that they may be easily
compared with one another.

3.2 Algorithms

The algorithms used in this investigation are all of the same utility, namely finding optimal
routes based on edge weights and distances within the graph itself.

3.2.1 Dijkstra’s Algorithm

Dijkstra’s shortest paths algorithm is the single-source shortest paths algorithm, and it
utilizes the weight of each edge between nodes to evaluate the path being constructed.
[Lew20] This algorithm is greedy in execution, as it overestimates distances between each
node and the starting node, then visits each neighbor and records the shortest subpath to the
neighbors. By iteratively finding optimal subpaths, the overall shortest path is constructed.
The algorithm stores the unvisited neighbors of the source node S in a priority queue Q, then
pops out the minimum weight neighbor in a process called relaxing the edge. This process
runs in O(V log V + E log V), where V is the set of vertices and E is the set of edges. If each
of the vertices in the graph have an outvalence of m, and the edge weight from the source

vertex s to the target vertex t is n, then Dijkstra’s algorithm would expect to relax edges on
the order of m".[BAN17|

3.2.2 Dijkstra’s Algorithm (Bidirectional)

The bidirectional implementation of Dijkstra’s algorithm maintains the mechanics of the
standard version, but instead utilizes a different stop condition in tandem with a split exe-
cution to cut down on the total number of neighbor nodes that are relaxed in each iteration.
Dijkstra’s standard algorithm begins at a source node and continues until a target node is
reached, but in the case of the bidirectional version a search is begun from both the source
node and target node. These searches then continue in opposite directions until they meet
each other in the middle. With this edit to the algorithm, the expected number of edges to
be relaxed is reduced to the order of 2m™2.[BAN17]

3.2.3 A*

The A* algorithm is an informed search algorithm that uses a heuristic function to expand
edges one at a time from the start node to the end node. [Dor| It aims to find a path with
the lowest overall weight according to its heuristic, and maintains a tree of paths between
the nodes in order to evaluate each path possible. Once the end node is reached, it returns
the path found of least weight from this tree. A* often uses a priority queue to determine
which edge to expand first, with the nodes being ordered according to the function f(n) =
g(n) + h(n), where g(n) is the cost of the path from the start to that node, and h(n) being
the heuristic function that estimates the cost of the path from that node to the goal. The
worst case runtime of A* in a setting with unbounded memory is exponential in the depth
of solution path and branching factor of successors per state, or O(b?).

3.2.4 Bellman-Ford Algorithm

The Bellman-Ford algorithm also utilizes edge relaxation, but in contrast to Dijkstra’s al-
gorithm that greedily selects the closest unvisited neighbor, this algorithm relaxes all of the
neighboring edges. It then repeats this process and calculates distances with every iteration
until every node in the graph has been visited and has correct distances calculated for each
edge. This algorithm runs in O(V x E) time, with V being the number of vertices and E the
number of edges. [Kla]

3.3 Results

The results of this experiment are reported by code in each iteration of the main loop, and
summarized in the results table. The times shown for each algorithm are reported in seconds,
and the path lengths are the number of nodes in each path. The rightmost column shows
the average time to complete the search for each algorithm, and the average path length for
this run of the experiment. The columns are labelled by the run of the evaluation for which
they’re reporting times, and the rows are labelled by which algorithm is being evaluated.

Results Table

1 2 3 4 5 6 7 8 9 10 Avg

Dijkstra | 0.003667 0.000377 0.001085 0.001201 0.001832 0.004034 0.002414 0.009489 0.001092 0.002973| 0.002816

Bi 0.007893 0.000375 0.001246 0.001662 0.001335 0.004014, 0.001888 0.001576 0.000953| 0.003372/ 0.002431
Dijkstra
A* 0.084870 0.008491 0.006253| 0.012794 0.045652 0.037729 0.040821 0.032166 0.016926/ 0.023577| 0.030928

Bellma 0.050923 0.048548 0.049336| 0.052532 0.045724 0.083545 0.051652 0.048958 0.049655 0.055567! 0.053644
n-Ford

Path 136 61 48 62 108 177 100 87 55 127 96.1
length

Times shown in seconds

4 Analysis

The best performing algorithm for this dataset was the bidirectional Dijkstra’s algorithm,
outperforming the other algorithms applied by significant margins aside from Dijkstra’s
algorithm itself. The standard variation of Dijkstra’s algorithm was at each iteration very
close to the bidirectional version in terms of time took to complete, with their average
execution times being approximately 0.0004 seconds apart. The next most efficient algorithm
was A* with an average time of approximately 0.03 seconds to complete the search. The
slowest algorithm to complete was the Bellman-Ford algorithm with an average execution
time of approximately 0.05 seconds. There emerge two major sides of the resulting data,
that being Dijkstra’s algorithm and its bidirectional variant being separated from A* and
Bellman-Ford by approximately .028 seconds on average.

An interesting trend emerges when viewing the results outside of the averages, however, as
A* and Bellman-Ford trade places in terms of completion order for paths of different lengths.
The shorter portion of paths (j100 nodes) saw A* outperforming Bellman-Ford, occasionally
by orders of magnitude. In contrast, for longer paths (;,100 nodes) the execution times for
the two slower algorithms were much closer.

As expected from the average results, the difference between the two versions of Dijkstra’s
algorithm in terms of execution time is incredibly small, often times within .0001 seconds of
each other.

These results are intriguing for a variety of reasons, most notably the performance of A*.
One of the lesser performing algorithms in this experiment, A* is frequently heralded as a
leader in speed and efficiency in terms of search algorithms, so to see it place 3rd overall feels
in contradiction to this legacy. This performance is most likely due to the heuristic function
used, which while admissible could perhaps have been replaced with one that yielded better
results. For this experiment the heuristic used was the linear distance between the points,
but there exists room for a more advantageous heuristic to have been developed. Another
interesting facet was that Dijkstra’s algorithm was so effective, as it is often introduced as a

more basic search algorithm and there have been proposed many versions that report better
performance. An unsurprising result is that of the Bellman-Ford algorithm, as relaxing every
edge in a graph this large and dense is expensive in both time and space.

5 Conclusions

Public transit route planning is a perfect application of graph search theory and algorithms,
representing a real-world situation that can be abstracted directly to a node graph. Planning
these routes is of course a more nuanced practice in actuality, as many other factors go into
planning where a route will provide service to a city, such as the surrounding neighborhood,
intersections with other transit lines, and projected amount of utility for locations that may
not directly path-optimal. With this in mind, a simplified version of this problem can be
viewed directly by the node graph constructed in this experiment. This graph can then be
used for comparing search algorithms, and as shown with varying results.

These results were rather direct, and the performance on such a large graph is a tes-
tament to how well the algorithms in question are conceptualized and developed. For this
experiment, Dijkstra’s algorithm utilizing bidirectional search was the most effective one ap-
plied to the problem with the fastest average searches. The least effective algorithm in this
case was the Bellman-Ford algorithm with the longest searches on average. Between these
were the standard Dijkstra algorithm and A* search.

5.1 Considerations for future experiments

Going forward, there are several areas where this experiment could be improved. Firstly,
more algorithms could be implemented and tested. This project ended up removing the
genetic algorithm originally conceived due to technical issues with the implementation of the
node graph. To add to this, the initial research suggests large improvements in performance
over Dijkstra’s algorithm, so having a genetic algorithm present may yield even better results.
Another aspect that could be improved for a later version is the implementation of A* with
a better heuristic, in the hopes of seeing better performance overall. This experiment could
also be applied to a larger variety of node graphs of varying sizes, to explore farther the
limits of what can be achieved by these algorithms. To improve the problem itself, there
could be more aspects added to each algorithm to take into account different types of edges
that better model real-world circumstances, or more aspects of nodes themselves such as the
type of stop they represent or how many other routes use that particular stop.

References

[BAN17] Alican Bozyigit, Gazihan Alankus, and Efendi Nasibov. Public transport
route planning: Modified dijkstra’s algorithm. pages 502-505, 10 2017.

[BGGMEP14] Maria Angeles Sdez Bldzquez, Sebastian Garcia-Galén, José Enrique Munoz-

[CFT02]

[Dor]
D13]

[EDF14]

[Kla]

[Lew?20]

[MMP14]

IMSM*21]

[Sen20]

[SIM22]

Expodsito, and Rocio Pérez Prado. Genetic Algorithm for Scheduling Routes
in Public Transport, volume 233. Springer, Heidelberg, 2014.

Alberto Caprara, Matteo Fischetti, and Paolo Toth. Modeling and solving
the train timetabling problem. Operations Research, 50(5):851-861, 2002.

Alan Dorin. Search algorithms - a*.

Selim Dundar and Ismail Sahin. Train re-scheduling with genetic algorithms
and artificial neural networks for single-track railways. Transportation Re-
search Part C: Emerging Technologies, 27:1-15, 2013. Selected papers from
the Seventh Triennial Symposium on Transportation Analysis (TRISTAN
VII).

Cyrill O. Escolano, Elmer P. Dadios, and Alexis M. Fillone. An integrated
and optimal scheduling of a public transport system in metro manila using
genetic algorithm. In 2014 International Conference on Humanoid, Nanotech-

nology, Information Technology, Communication and Control, Environment
and Management (HNICEM), pages 1-6, 2014.

Andreas Klappenecker. The bellman-ford algorithm.

Rhyd Lewis. Algorithms for finding shortest paths in networks with vertex
transfer penalties. Algorithms, 13(11), 2020.

Karan Mitra, Nishikant Mokashi, and Prasad Patil. A survey on routing
algorithms for efficient and optimized railway scheduling. Indian Journal of
Applied Research, 4(4), 2014.

Zahid Hasan M., Hossain S., Mehadi Hassan M., Chakma M., and Uddin M.S.
A genetic algorithm-based optimal train schedule and route selection model.
Proceedings of International Joint Conference on Advances in Computational
Intelligence, 2021.

Raj Sengo. Bellman-ford single source path algorithm on gpu using cuda.
2020.

Tommaso Schettini, Ola Jabali, and Federico Malucelli. A benders decompo-
sition algorithm for demand-driven metro scheduling. Computers 165 Opera-
tions Research, 138:105598, 2022.

